Real User Stories: Global Color Control


P1160562

Last year I was working with a well established company in Pennsylvania that specializes in ‘museum quality’ art and photography books. They were considering several titles for their first Asia production attempt, but the company was concerned the quality that their reputation was built upon would not be upheld by the new contract facility. Additionally, they wanted to implement a color control and monitoring process at their US factory.

The company’s ultimate objective was to bring the proofing of both facilities to within 90%+ of GRACoL 2013 target values using the SpotOn! Visual Match Scorcard. At press we matched the printing color to these accurate proofs. Achieving this goal would ensure their customers continued to receive the same high quality products regardless of where these items were printed, and the company would be able to efficiently control color in two facilities nearly 8,000 miles apart.

This was a job for color experts, so we asked Bruce Bayne from Alder Technologies to spend several days in the Pennsylvania facility and calibrate their new Epson SC9900 proofer. He also installed SpotOn! Verify to bring their quality monitoring and QC assurance procedures to the next level. Moving forward, Verify would be used to control the print process by monitoring and tracking the consistency and accuracy of proofs made in the US and abroad.

Next, the highly skilled Cathay America team used SpotOn! Verify to calibrate and monitor the Epson proofers at the printer’s new facility in Shenzhen, China. Verify’s Visual Match feature guided our calibration work and helped ensure proofers on two continents would match accurately.

Finally, the US based press was calibrated, and the Cathay America team calibrated the presses in China. Both were able to achieve GRACoL2013/CGATS/CRPC6 target values. This was the last step to bring all of the proofing and production devices into alignment.

The next step was to implement a global monitoring and QC assurance system (process control) that would allow our customer to achieve the same high quality presswork over time, regardless of where their books were printed.

Thanks to the support of Bruce Bayne, our China team, and SpotOn! Verify, our customer was deeply impressed by the quality of their first prints from Asia. Both the US client/printer and the photographer whose work we reproduced were thrilled with the quality of the images in this very impressive book. Most importantly, our US client was confident that he could print his high quality museum editions at our China facility.

Since this first successful printing last year, many more titles are now being produced with excellent color. This was possible because of our process control program enabled by SpotOn! Verify.

The details of our method are below.

Click Here to try SpotOn! Verify

P1160560

Using SpotOn! Verify to monitor and control presswork.

The printer had 10 fairly new, well-maintained Komori presses, each with an Intellitrax scanning spectro. But the intellitrax software was several generations old and didn’t report anything more that solid ink densities (SID).

This limited color data was simply not enough information to tightly monitor production printing and achieve the accurate and consistent color control that we required. The printed images were quite well known, and our client needed assurance the original images could be reproduced accurately.

We decided to print on a slightly larger press sheet so that we could add a second set of colors bars at the trailing edge of the sheet. One control strip was placed in each of the four alleys of the book pages, just below the Intellitrax scanner’s control strip. These 18-patch, custom color control strips were designed to be scanned by a i1Pro2. After scanning, the measurement data was sent to SpotOn! Verify.

DSCF0437

Press proofing key images before the production run. Notice the SpotOn! Version 2 color control strips  that run vertically. This allowed for SpotOn! Analyse to measure and display comprehensive printing data.

 

If the press has shifted too far out of spec, the ink can be levelled accurately by scanning the press color bar with X-Rite’s Intellitrax system. The next step is to scan the custom color control strips in each of the four alleys with the i1Pro2 and SpotOn! Verify to monitor compliance with CGATS21/CRPC6 target values.

Verify clearly displays the data from each scan for the operator to evaluate compliance with the CGATS21/CRPC6 target values. If the press is out of compliance, the operator can take further corrective action to bring the press back into tolerance before running color-critical jobs.

my bar

Great color is within reach, and it can be maintained efficiently over time. What it takes is the desire to control the process.

-  Joseph J. Pasky, Shenzhen

Test Form that Bob Signed

Patches: C, C50, M, M50, Y, Y50, Red, Green, Blue, 3/c Black, 100k, 25k, 25cmy, 50k, 50cmy, 75k, 75cmy, paper white

Click Here to try SpotOn! Verify

Which Wedge Is Best?


Recently, a color process control manager at a large print production facility wanted to know if there is a more comprehensive chart available for daily digital color evaluations than an 12647-7 proofing wedge. He pointed out the IT8.7-4 has too many patches, and the P2P51 has too many gray finder patches. Reiterating a thought we’ve all had many times, he asked: “Am I overthinking the value of additional patches?”

Great question!

There is a tradeoff between patch count and how effective a chart is at gathering QC information. There is also something to be said for both extremes; too many patches and too few patches. Too many patches on a noisy (grainy, low screen ruling, etc.) printing device can cause unwanted noise in the measurement data (like using a 1 pixel eyedropper setting in photoshop to determine the dot percentage in a noisy image). Too few patches and you are not sampling enough colors to accurately model how the device is printing.

I just dissected the TC3.5 patch set and found it to be lacking in the 3 color grays. There are not many patches and none are G7 compliant gray patches. In my opinion, this eliminates the TC3.5 for any G7 evaluation. In fact, most of the currently available charts are not very good in the gray areas, especially if you are trying to evaluate G7 compliance. Idealliance built the TC1617 to address this lack of G7 gray patches in the IT8.7-4, but even this chart has too many patches for day-to-day evaluations.

The 3-row 2013 12647-7 chart (the replacement for the 2009 2-row chart) was built as a very good compromise between patch count and patch value. It has a decent number of patches to effectively evaluate print consistency, which includes G7 compliant gray patches, the typical array of CMYKRGB tone ramps, pastel patches, saturated patches, and a good assortment of dirty patches. These dirty patches were purposely built with CMY values and then with 100% GCR values excluding the 3rd color and replacing it with K. This was done because many separations, especially those done with ink reduction products, are made with GCR these days. It’s hard to beat what’s in that 3-row, 84-patch control strip.

wedge_image

The 3 Row Control Strip with key patches highlighted.

While considering charts and patch values, it’s almost more important to note the metrics and tolerances we place on these patches for conformance to specifications. If you look at the metrics we currently use for pass/fail, they are very CMYK printing press centric. Commercial print, specifically offset printing, has been the forefront of most industry standard and best practice development. Therefore much of the data gathering and evaluation is based on printing devices where C, M, Y, and K ink thicknesses are controllable by the operator. This means most metrics are tied to effective control of those ink thicknesses, which is largely irrelevant to the digital world.

We should be asking: “What are we passing and failing?”

For the G7 Colorspace metrics (currently the most stringent) we are evaluating:

  • Substrate – Paper color is good to evaluate
  • Solid CMYK – Very useful to press operators, but not much of a typical image or job is just solid C, M, Y, or K. This makes these patches poor for evaluating digital print consistency, especially visual consistency.
  • Solid RGB overprints – In my opinion, this is more important than Solid CMYK, as overprinted colors are what we see when we look at printed material. Still, these are only the solids, no tints.
  • CMY gray balance and tone – This is very important in controlling and evaluating print consistency, although it’s more important in print processes that lay down individual CMYK inks like offset.
  • All the other patches (pastels, saturated, dirty colors, skintones, CMYKRGB tints) are all lumped into a single metric called ‘All’ and then given a whopping average ∆E of 1.5 or 2.0 and a worst patch ∆E of 5.0 (95th percentile). That’s huge! A virtual barn door to let almost anything outside of grays and CMYKRGB solids pass.

These are not very visually oriented metrics and tolerances. So the big question to ask is what are you evaluating with your chart, or more importantly, what metrics and tolerances are you using to evaluate your chart? For G7 you could just use a P2P and eliminate the gray finder patches (columns 6-12), because the metrics are really only focused on CMYKRGB solids and the gray patches.

Bottom line, if we are looking for print consistency, we need to look at establishing new metrics that truly help us determine how visually consistent a print is. After a great deal of research, I believe this should be based on a cumulative relative frequency model (CRF) that evaluates all colors in a chart. In a CRF model, each and every one of the patches is relevant to visual consistency and is being counted within the evaluation. I have found the 3-row control strip does an excellent job of evaluating visual print consistency when using CRF. I’ve also performed the experiment in live production many times and have continued to get feedback from users who say using CRF and the 3-row control strip is the best method they’ve found to evaluate visual consistency.

If you would like to see the true power of CRF and real world metrics, try SpotOn! Verify. The trial is free, and our team will help you get started.

Real User Stories: Process Control for Seagate


pasky_image_trio

Long-time SpotOn! user and product dealer Joe Pasky at Cathay America offers insight into the value of process control…

EIGHT years ago, I was asked by Seagate Technologies (California) to help them G7 qualify the 6 printing plants that they used in China and Thailand which produced retail cartons for disk-drives. They were having difficulty with variations in the color appearance of similar product images that were printed at different factories, even though the files and proofs for these images were created by a single color-house in the States. Several runs of cartons were rejected and had to be reprinted; this caused delays in the product release schedules and extra costs.

The original strategy for press checks on new products was to ask the printer to produce a press sheet at make-ready that matched the supplied proofs as closely as possible. This best match was approved and became the master reference sheet for printing all subsequent SKUs that used those particular brand colors and product images.

The problem with this approach was that the printed product images approved at one factory were sometimes different from identical product images produced at other Seagate printers.

As we began to G7 Qualify each of the printers and train them to ‘print to the numbers’, the color differences between the master reference sheets at the multiple printing plants was greatly reduced.

When traveling to the States a few months later, I visited a Best Buy store. I took particular notice of the display of Seagate disk drives; cartons that I had approved several months earlier. Looking at the same and similar cartons side-by-side, I was disappointed to see a noticeable variation in color and balance. I took photos of the UPC codes to identify the printer and began an investigation.

As it turned out, the operators were not being vigilant in monitoring the color during the press run. We implemented a new sampling procedure where a percentage of sheets from the press run were pulled and time-stamped. These were measured by the QC department and reports from each production run were sent to the Seagate China office for review. This procedure required extra effort and attention from the press operators and supervisors, but after several months of monitoring, the printing consistency was improved and variation reduced.

Monitoring the press sheets was effective, but we also wanted to sample the individual cartons after they were formed. But once the carton was die cut from the press sheet there was nothing to measure. The press colorbars were gone. To solve this problem, we built a 7-mm, 14-patch control strip that was hidden in the glue flap and another control strip placed in the tuck-flap of the box. The patches on this strip included two brand-color patches, paper-white, CMYK, 3-color black, and the G7 tone value targets: 25k, 50k and 75k and 3-color, ¼-tone, midtone and ¾-tone tints.

We had the experience of using SpotOn! Verify software to check digital proofs. We realized that we could also use SpotOn! Verify to scan the printed control strips. We took samples of finished boxes from the production runs and used SpotOn! Verify to quickly measure and record the color data. SpotOn!’s reporting function helped us build a quality report and history for each of the production runs.

The press operators also began using SpotOn! Verify during make-ready to measure the control patches to be sure that they were hitting their G7 target values and assure that they would pass the QC department’s ‘pass/fail’ criterion. It was an excellent tool that was very easy to use in production. We no longer use proofs as a color reference; we’re printing 100% ‘to the numbers’.

Seagate was quite pleased with the results. For the past 6-years, each of the factories have been using SpotOn! Verify to monitor color on press and in the QC department, cartons from each of the factories and the images for each SKU were an excellent match to each other. All the printing plants were printing product images that were accurate and consistent from SKU to SKU and run-to-run. Color variation between boxes produced at multiple factories was practically eliminated.

Using SpotOn! Verify to measure these simple hidden color control strips that incorporate G7 data points has made it possible to monitor and improve packaging color reproduction of finished folding cartons across multiple production facilities. Any brand hoping to improve color consistency of printed packaging across a global supply chain could use this approach to improve quality and color fidelity.

Joseph J. Pasky

Cathay America

Shenzhen, China

jpasky@gmail.com

Analyze Is Here!


SSMA_mailchimp_header_bullseye

Exciting news! Today, we’re announcing the launch of Analyze, the ultimate weapon for print industry professionals who are serious about printing great color. Analyze is a powerful addition to print management software that further increases the efficiency of the printing process. It presents detailed color data in a simple visual interface to help printers improve consistency and increase the accuracy of color calibration for all types of printing devices. It puts process control in users’ hands, helping deliver quicker turn times, reduced ink and paper waste, and improved profits.

In today’s competitive print industry, efficiency and accuracy are the keys to success, and Analyze also helps users streamline the G7 qualification process and maximize the results over time. We are thrilled to announce this significant step forward for the color industry, and we are ready to help you integrate it into your workflow.

Buy it now, or check out the full press release!

082615_car_dashboard

Color: Get in the Driver’s Seat


Anyone who has been in the printing industry very long knows how difficult it is to achieve and maintain great color. Today, customers constantly demand higher quality and more consistency from their print suppliers, which makes color management a critical piece of any successful print business.

Color management processes, tools, and workflows vary from company to company, but they are all designed to bring out the best in each graphic, substrate, and printing device. Printers, presses, and monitors are calibrated to achieve an expected result. Prepress workflows are streamlined, and pass / fail metrics are put in place to verify jobs before they go to press.

These foundational steps optimize performance and accuracy the moment they are implemented, but they don’t control the effects of time. Running jobs, performing maintenance, and even the weather will impact printed color. Still, accuracy is a consistent customer expectation.

Industry leaders control their processes and produce the same high-quality color with consistency over time, taking both color management and profitability to a whole new level. Not only do they calibrate their equipment and streamline their workflows as a part of their color management protocol, they collect performance data over time to decode printer behavior. This enables them to address issues quickly and effectively and achieve superior performance day after day. These pros can anticipate issues before they start and cut crippling color surprises off at the pass.

Accuracy and efficiency are critical to thriving in this industry, because high performance is a widespread customer expectation. While color management practices vary between companies, process control can be applied to any color management system to maintain peak performance. It’s what separates the best from the rest.

Being right once is good. Printing the right color the first time every time is how 21st century pros blow the competition away. They get in the driver’s seat, turn on process control, and leave the past in the dust. Where are you sitting?

bulbs

OBAs: New Lights for Viewing Booths (Part 2)


In our last blog we discussed optical brightening agents, or OBAs. If you recall, these are the additives that make whites whiter.

Click here to read the previous post.

OBAs caused issues when they were first introduced to printing substrates, because viewing booth lamps were not designed to activate them. In addition, spectrophotometer lamps didn’t align with the viewing booth lamps, so they ‘saw’ the paper color with OBA content differently than we ‘saw’ the paper color. (Spectros will be discussed in the final blog of this series.) The industry began correcting this misalignment in 2009 by updating D50.

D50 has been the long-time standard lighting condition for the print industry. Until 2009 the standard (ISO3664) defined D50 to contain little to no UV radiation, meaning it didn’t quite simulate natural daylight. This also means prints enhanced with OBAs looked different when being approved in a viewing booth than they did outdoors. Obviously that’s an issue for prints meant to see the light of day.

In 2009 D50 received an overhaul to more closely simulate natural daylight. UV radiation was added to viewing booth lamps so OBAs would fluoresce, or appear whiter and brighter, during visual approvals. As a result, OBA-rich paper stock looked similar outdoors and in the viewing booth under the new 2009 standard.

NOTE: Change always takes time, so it was a few years before the last of the lamps rated to the pre-2009 D50 standard were purchased and installed. Unfortunately, many people only replace their lamps after they burn out, so although manufacturers no longer sell the old product, many booths still have the pre-2009 lamps. Some even have both the old and new D50 lamps in the same booth at the same time

The point of having a viewing booth is to standardize lighting conditions and avoid color surprises. Having conflicting lighting conditions in the same viewing booth does exactly the opposite. Speaking of bad ideas, daylight or grow light lamps are not the same as D50 standard lamps. Grow lights (5000K lamps) are not D50 lamps and should never be used in a viewing booth.

Sunshine

The new D50 standard lamps added UV light to viewing booths so visual approvals done inside looked similar to prints viewed outside. This was an important advancement for accurate print approvals on production paper stocks. Unfortunately, proofing stocks were slower to catch the OBA craze. This caused problems as shops began to replace their old lamps, because press sheets with OBAs and proofing papers without them no longer matched under the new D50 lamps.

As complaints rolled in, viewing booth manufacturers offered a quick fix: A UV filter was placed in front of the lamps to block UV light, and, in effect, converted the new lamps back to the old standard. This allowed proof stocks and press stocks to look the same again, because the OBAs didn’t activate with the UV radiation blocked.

This was a Band-Aid approach. The real issue was the proofing stock needed to incorporate OBAs to match the press stock. We are still in flux about how much OBA content proofing stock should have, but today you can purchase proofing and press stock with similar OBA content.

As time goes on, viewing booths and proofing papers will align with the industry’s use of OBAs. Visual approvals will contain fewer surprises, and the lamp challenges experienced after 2009’s D50 upgrade will become a thing of the past. We will all breathe a sigh of relief, turn to our spectros, and begin the journey once more.

Stay tuned for our upcoming blog on spectrophotometers, OBAs, and how D50 and M1 fit into the mix.

Epson Paper with OBA's

Optical Brightening Agents (OBA): Whiter, Brighter, Better? (Part 1)


Part I – OBAs and Color Reproduction

For printers, color is everything. Even paper has color. Paper color can drastically affect printed color. In the pursuit of predictable color, white isn’t just white anymore.

We’ve all seen ads for toothpaste and laundry detergent promising whiter whites. Optical brightening agents (OBAs) have been added to these products to create the whitening effect. OBAs stay on the surface of fabrics and teeth and literally change the color you see from yellowish to blue-white. Our eyes see blue-white as cleaner and brighter than yellow-white.

Continue reading

color-space-rgb-cmyk

Color Nerds Explain the Basics – Color Spaces


Color Basics

Color is dynamic. We all see it a little differently, because color is the physical response of the eye to light + the mental interpretation of those responses. This makes printing color accurately a bit tricky until one has a basic understanding of color space.

First, all color starts with light. The color of a physical object is the result of projected light reflecting off the object. Your eyes + brain interpret what gets reflected, and the result is the color you see. A red apple, for example, reflects red wavelengths of light and absorbs all others. You see the reflected red wavelengths. As ambient light decreases, colors appear to fade because there is less light and, therefore, less color.

Continue reading

Pie process control

Using Data: The Process of Pie


One of the best parts of the holidays is the food, especially the pie. Specifically the homemade variety created by someone with a tried, true, and consistent process… Grandma’s finest beats the store-bought variety every time. Believe it or not, color management is much like pie construction. Blend the right components to roll out a great foundation (the delicate, flaky crust), adjust files to print properly (create a flavor-packed filling with just the right thickness), and print multiple jobs using the same process (pecan, apple, chocolate cream, etc.).

We’ve taken some time to research in-house color management processes at a variety of digital printing facilities over the past few months. Our findings show the same core principle is true in both printing and pie making: process is everything.

Continue reading